Reference Table for Choosing the Right Statistical Test/Method:

Model/Test	Use when	Use when the	Basic Description
Model/Test	response/outcome	explanatory variable	Basic Description
	variable is	of interest is	
Two-sample	Continuous (or at	Categorical,	Tests whether there is
t-test	least Quantitative)	comprised of two	a significant difference
1-1631	least Quartitative)	groups, and the two	between the means of
		groups, and the two	the two groups
		independent	line two groups
Paired t-test	Continuous (or at	Categorical,	Tests whether the
I direct toot	least Quantitative)	comprised of <i>paired</i>	mean of differences in
	loadi Quantitativo)	data, e.g. the same	the outcome variable
		patients before and	is significantly
		after an intervention	different between
			paired observations
One-way	Continuous (or at	Categorical,	Tests whether there
ANOVA	least Quantitative)	comprised of three or	are any statistically
		more groups, and the	significant differences
		groups are	between the group
		independent	means
Simple	Continuous (or at	Continuous (or at	Tests whether there is
Linear	least Quantitative)	least Quantitative)	a significant <i>linear</i>
Regression			association between
			the continuous
			outcome and the
			continuous predictor
			variable, and
			estimates how
			changes in the
			predictor affects the
Marilian In	0	NA. Itiala a satisassassas	outcome variable
Multiple	Continuous (or at	Multiple continuous	Tests whether there is
Linear	least Quantitative)	and/or categorical	a significant <i>linear</i>
Regression		predictors	association between
			the outcome variable and each predictor
			variable, after
			adjusting for the
			effects of all other
			predictors (i.e.
			controls for
			confounding)
Chi-squared	Categorical (e.g. we	Categorical, with all	Tests whether there is
Test	are interested in the	observations being	a significant
	proportion in each	independent	association between
	category)	'	

			the two categorical variables
Ordinary Logistic Regression	Categorical with binary outcomes (e.g. success/failure)	Usually continuous (or at least quantitative) but possible with categorical predictors	Tests whether the predictor variable has a statistically significant relationship with the outcome variable, and allows you to estimate the odds of the outcome occurring given the predictor variable
Linear Mixed Effects Model	Continuous, with repeated measures for each subject/patient	Multiple continuous and/or categorical predictors	Tests whether there is a statistically significant relationship between the outcome variable and each predictor variable, after allowing for correlation within subjects caused by repeated measures
Survival Analysis (e.g. Cox regression)	Time-to-event, e.g. number of days until occurrence of a specific event	Multiple continuous and/or categorical predictors	Tests whether there is a statistically significant association between the outcome and predictor variables in terms of <i>risk</i> of the event

Please note that some of these types of analyses (logistic regression, linear mixed effects modeling, survival analysis, etc.) can be quite complex and complicated to interpret, and we *strongly recommend* you come to us at the Rush Biostatistics Core for assistance in fitting and interpreting these models to ensure proper application of statistical methods, accurate interpretation of results, and valid conclusions.

Please note that for each of these tests/analyses, there are various assumptions that need to hold in order for these tests to be valid. For instance, for a two-sample t-test, we generally need the outcome variable to be normally distributed within each of the two groups. However, if the assumptions are severely violated, there are alternative *nonparametric* tests that may be used instead, that relaxes some of the assumptions (usually resulting in more valid inference but decreased *power*).

Here is a table of commonly used non-parametric alternatives to some of the tests/methods listed above. We strongly encourage investigators to consult the Rush Biostatistics Core when choosing between these methods.

Non-Parametric Alternatives to Common Statistical Tests/Methods

Non- Parametric Test	Use as an alternative to	Use when	Basic Description
Wilcoxon Rank-Sum Test (Mann- Whitney U)	Two-sample t-test	The outcome variable is not normally distributed within the groups (groups must still be <i>independent</i>)	Tests whether the distributions of the outcome differ between two independent groups
Wilcoxon Signed-Rank Test	Paired t-test	The differences between paired observations are not normally distributed	Tests whether the median of the differences between paired observations is zero
Kruskal- Wallis Test	One-way ANOVA	The outcome variable is not normally distributed, we have 3 or more <i>independent</i> groups	Tests for differences in the distribution of the outcome across multiple groups
Quantile Regression	Simple/Multiple Linear Regression	The residuals are non-normal, or the data is skewed or has large outliers	Models the relationship between predictors and the median (or other quantiles) of the outcome
Fisher's Exact Test	Chi-squared Test	Sample size is small and/or we have several cells with expected frequencies of <5	Tests for association between two categorical variables with small sample sizes